DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO

Test Booklet Series

TEST BOOKLET

T. B. C.: VS - 1 - 2018/19

SPECIAL RECRUITMENT TO VETERINARY ASSISTANT SURGEON

sl. No. 1009

PAPER - I

(VETERINARY SCIENCE)

Maximum Marks : 400

[Time Allowed : 2½ Hours]

: INSTRUCTIONS TO CANDIDATES :

- 1. IMMEDIATELY AFTER THE COMMENCEMENT OF THE EXAMINATION, YOU SHOULD CHECK THAT THIS TEST BOOKLET DOES NOT HAVE ANY UNPRINTED OR TORN OR MISSING PAGES OR ITEMS ETC. IF SO, GET IT REPLACED BY A COMPLETE TEST BOOKLET OF THE SAME SERIES ISSUED TO YOU.
- 2. ENCODE CLEARLY THE TEST BOOKLET SERIES A, B, C OR D, AS THE CASE MAY BE, IN THE APPROPRIATE PLACE IN THE ANSWER SHEET USING BALL POINT PEN (BLUE OR BLACK).
- 3. You have to enter your Roll No. on the Test Booklet in the Box provided alongside. DO NOT write anything else on the Test Booklet.
- 4. YOU ARE REQUIRED TO FILL UP & DARKEN ROLL NO., TEST BOOKLET / QUESTION BOOKLET SERIES IN THE ANSWER SHEET AS WELL AS FILL UP TEST BOOKLET / QUESTION BOOKLET SERIES AND SERIAL NO. AND ANSWER SHEET SERIAL NO. IN THE ATTENDANCE SHEET CAREFULLY, WRONGLY FILLED UP ANSWER SHEETS ARE LIABLE FOR REJECTION AT THE RISK OF THE CANDIDATE.
- 5. This Test Booklet contains 200 items (questions). Each item (question) comprises four responses (answers). You have to select the correct response (answer) which you want to mark (darken) on the Answer Sheet. In case, you feel that there is more than one correct response (answer), you should mark (darken) the response (answer) which you consider the best. In any case, choose ONLY ONE response (answer) for each item (question).
- You have to mark (darken) all your responses (answers) ONLY on the separate Answer Sheet provided by using BALL POINT PEN (BLUE OR BLACK). See instructions in the Answer Sheet.
- 7. All items (questions) carry equal marks. All items (questions) are compulsory. Your total marks will depend only on the number of correct responses (answers) marked by you in the Answer Sheet.
- 8. Before you proceed to mark (darken) in the Answer Sheet the responses to various items (questions) in the Test Booklet, you have to fill in some particulars in the Answer Sheet as per the instructions sent to you with your **Admission Certificate**.
- 9. After you have completed filling in all your responses (answers) on the Answer Sheet and after conclusion of the examination, you should hand over to the Invigilator the Answer Sheet issued to you. You are allowed to take with you the candidate's copy / second page of the Answer Sheet along with the Test Booklet, after completion of the examination, for your reference.
- 10. Sheets for rough work are appended in the Test Booklet at the end.

DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO

- Haemorrhagic Septicaemia (HS) is a bacterial disease of animals which mainly affects:
 - (A) Haemopoitic system
 - (B) Digestive system
 - (C) Respiratory system
 - (D) Nervous system
- 2. Post parturient haemoglobinurea is a common disease in :
 - (A) Dogs
 - (B) Buffaloes
 - (C) Horses
 - (D) Pigs
- 3. Intestinal obstruction caused by Ascarid worms in buffalo calves leads to:
 - (A) Toxaemia
 - (B) Constipation
 - (C) Diarrohea
 - (D) Excessive salivation
- 4. Vitamin B1 deficiency in small ruminants causes:
 - (A) Beri-Beri
 - (B) Digestive disorders
 - (C) Peripheral paralysis
 - (D) Polio-encephalomalacia
- 5. Milk fever can be grouped as a disease of:
 - (A) Deficiency disease

- (B) Infectious disease
- (C) Metabolic disease
- (D) Toxicological condition
- 6. Mange is a very common condition in dogs caused by :
 - (A) Ticks
 - (B) Lice
 - (C) Mites
 - (D) Fungus
- 7. Leptospirosis causes abortion in animals and organism can be seen in:
 - (A) Saliva of affected animal
 - (B) Sputum of affected animal
 - (C) Faeces of affected animal
 - (D) Urine of affected animal
- 8. Black tarry colored blood which does not clot oozes out of all natural orifices of animal affected with:
 - (A) Anthrax
 - (B) Brucellosis
 - (C) Babesiosis
 - (D) Post parturient haemoglobinurea
- 9. Johne's disease affects digestive tract of ruminants which are:
 - (A) Weak and emaciated
 - (B) Very young
 - (C) Old aged
 - (D) Neonates

- 10. Enterotoxaemia is caused by bacteria named:
 - (A) Clostridium perfringens
 - (B) Clostridium botulinum
 - (C) Enterobacter toxaem
 - (D) Enterobacter perfringens
- 11. The drug of choice for treating Black Quarter is:
 - (A) Tetracycline
 - (B) Sulfonamides
 - (C) Latest antibiotics
 - (D) Penicillin
- 12. Brucellosis is an emerging zoonotic disease which is best controlled by:
 - (A) Early diagnosis and treatment
 - (B) Test and slaughter
 - (C) Calf hood vaccination
 - (D) Hygienic measures
- 13. Mastitis is the most important, economically, disease of lactating animals and should be controlled:
 - (A) By reducing duration of infection
 - (B) By reducing new infection rate
 - (C) By adopting hygienic measure
 - (D) By adopting all of the above strategies
- 14. Tetanus or lock jaw is highly fatal disease of all domestic animals but the most susceptible animals are:
 - (A) Bovines

- (B) Equines
- (C) Caprines
- (D) Swines
- 15. Multivalent vaccine in dogs contains vaccine against:
 - (A) Canine distemper
 - (B) ICH
 - (C) Canine parvo virus infection
 - (D) All of the above
- 16. Vaccination against FMD should be undertaken:
 - (A) Once every year
 - (B) Twice every year
 - (C) Thrice every year
 - (D) Fourth time every year
- 17. Ringworm infection is caused by invasion of keratinized epithelial cells by:
 - (A) Ectoparasites
 - (B) Fungus
 - (C) Ticks
 - (D) Round worm
- 18. Coenuriasis in sheep causes:
 - (A) Sheep Gid
 - (B) Nervous ataxia
 - (C) Hydatid disease
 - (D) Alveolar hydatid disease

- 19. Bovine Ephemeral Fever is commonly observed during monsoon season in animals and is also known as:
 - (A) Ephemerosis
 - (B) Ephemeritis
 - (C) Bovine ephemeritis
 - (D) Three Day Sickness
- 20. While handling a dog exhibiting nervous signs and excessive salivation, a Veterinarian should take precautionary measures against:
 - (A) Rabies
 - (B) Pseudo-rabies
 - (C) Meningitis
 - (D) Neuritis
- 21. Most common neoplasms in farm animals are:
 - (A) Connective tissue
 - (B) Skin tumors
 - (C) Soft tissue tumors
 - (D) None of the above
- 22. Regeneration or repair depends on:
 - (A) Type of tissue
 - (B) Extent of defect
 - (C) Duration of trauma
 - (D) All of the above
- 23. Squamous cell carcinoma is very rare in :
 - (A) Dogs
 - (B) Pigs

- (C) Sheep
- (D) Goats
- 24. Homeostasis in circulatory failure is maintained by :
 - (A) Autoregulation
 - (B) Sympathoadrenal drainage
 - (C) Transmural capillary effects
 - (D) All of the above
- 25. In shock, level of ATP can be increased by using:
 - (A) Thromboxane
 - (B) Leucotriens
 - (C) Prostacyclin
 - (D) All of the above
- 26. In contusions:
 - (A) Injury is superficial
 - (B) No gap is there in continuity of tissue surface
 - (C) Anaerobic infection is common
 - (D) None of the above
- 27. Traumatic emphysema:
 - (A) Is a common complication of punctured
 - (B) May involve respiratory tract
 - (C) May involve GIT
 - (D) All of the above

28.	Anuria even after I/V fluid therapy ca			
	be due to:			

- (A) Kidney failure
- (B) Paralysis of urinary bladder
- (C) Tetany due to alkalosis
- (D) All of the above
- 29. Biogenic stimulator which is most effective in healing is:
 - (A) Skin graft
 - (B) Cartilage powder
 - (C) Tissue extract
 - (D) Amnion
- 30. Hydrogen peroxide (1 2%) is more effective as:
 - (A) Sporicide
 - (B) Bactericide
 - (C) Bacterostatic
 - (D) None of the above
- 31. Half life of Ce -137 is:
 - (A) 5 days
 - (B) 30 days
 - (C) 30 years
 - (D) 5 years
- 32. Fibrosarcoma is a type of tumor which has:
 - (A) TR = 1

- (B) TR = -1
- (C) Both of the above
- (D) None of the above
- 33. Radioisotopes used for intracavitary therapy are :
 - (A) Co 60 and Ce 137
 - (B) Sr 90 and I 131
 - (C) P 32 and I 132
 - (D) Sr 90 and Au 198
- 34. Liver though has enormous regeneration power, but exposure to radiation causes:
 - (A) Increases fibrosis and vascular injury but decreased hepaticytes and lobe weight
 - (B) Decreased fibrosis and hepatocytes but increases vascular injury and lobe wt.
 - (C) Increased vascular injury and hepatocytes but decreased fibrosis and lobe wt.
 - (D) All of the above
- 35. For brounchography dianosil is used @:
 - (A) 0.5 to 1.0 ml per kg BW
 - (B) 2.0 to 3.0 ml per kg BW
 - (C) 3.0 to 4.0 ml per kg BW
 - (D) 4.0 to 5.0 ml per kg BW

36.	Sodi	um and Meglumine diatrizote is		(B)	30
		in goats for IVP at the dose rate		(C)	12
	of:	20th 20 mlnorkah ut		(D)	Nil
	(A) (B)	2.0 to 3.0 ml per kg b. wt. 3.0 to 4.0 ml per kg b. wt.	42.	Mor	phological units of capsid is
	(C)	0.5 to 1.0 ml per kg b. wt.	7	calle	•
	(D)	4.0 to 5.0 ml per kg b. wt.		(A)	Capsomere
A 59				(B)	Primer
37.	Low	ionic contrast medium izamide was discovered by :		(C)	Peplomer
	(A)	Hallis Potter		(D)	All of the above
	(B)	Roentgen			
	(C)	Nyegaard	43.	Ger	nome of polio virus is :
	(D)	Carlson		(A)	dsDNA
38.	Virus	ses with icosahedral symmetry		(B)	Positive sense ssRNA
OO.		how many corners?		(C)	Semented dsRNA
	(A)	20		(D)	None of the above
	(B)	30	44.	Nak	ed viruses lack :
	(C)	12		(A)	Envelope
	(D)	Nil		(B)	Capsid
39.	Viru	ses are infectious agents that		(C)	Genome
	have	e:		•	
	(A)	DNA and RNA and proteins		(D)	
	(B)	DNA and RNA or proteins	45.	Re-	assortment occurs in :
	(C)	DNA or RNA and proteins		(A)	Polio virus
	(D)	DNA or RNA or proteins		(B)	Rabies virus
40.	Mor	phology of <i>Rotavirus</i> is :		(C)	Rota virus
	(A)	Brick shaped		(D)	None of the above
	(B)	Bullet shaped	46.	Go	neome of rabies virus is :
	(C)	Starshaped	₩0.		dsDNA
	(D)	. Wheel shaped		(A)	
41.	Viru	ises with icosahedra symmetry		(B)	Positive sense ssRNA
	hav	e how many faces ?		(C)	
	(A)	20		(D)	None of the above

47.		ns' contain one of the following		(C)	Fowl
		eir genome :	•	(D)	Camel
	` '	ssRNA	53.	Beta	(β) cells secrete :
	(B)	dsRNA		(A)	Insulin
	(C)	dsDNA		(B)	Glucagon
	(D)	None of the above		(C)	Both (A) and (B)
48.	Нера	atic lobule is :		(D)	None of the above
	(A)	Structural unit	E 1	,	ble caeca are present in :
	(B)	Functional unit	54.		•
	(C)	Secretory unit		(A)	Cow
	(D)	None of the above		(B)	Mare
49.	Epith	neliochorial placenta is seen in :		(C)	Hen
	(A)	Cow		(D)	Sow
	(B)	Mare	55.	Dive	erticulum ventriculi is seen in :
	(C)	Man		(A)	Ox
	(D)	Rat		(B)	Horse
50.	Bulb	ous cordis is absorbed in :		(C)	Pig
	(A)	Right atrium		(D)	Dog
	(B)	Left atrium	56.	Rou	and ligament of urinary bladder
	(C)	Ventricle		is :	
	(D)	Truncus arteriosus		(A)	Vestigeal of umbilical vein
51.	Purl	kinje cells are found in :		(B)	Vestigeal of umbilical artery
	(A)	Cerebellum		(C)	Coronary ligament
	(B)	Cerebrum		(D)	None of the above
	(C)	Parotid salivary gland	57.	Trig	jonum vesicae is present in :
	(D)	Heart		(A)	Urinary bladder
52 .	RB	Os are nucleated in :		(B)	Uterus
	(A)	Ox		(C)	Gall bladder
	(B)	Horse		(D)	Seminal vesicle
KC	- 1A	/15	(7)		(Turn over)

8.	. Horns of uterus appear like small intestine in :		63.	nucleus is seen in :		
	(A)	Bitch		(A)	Lymphocyte	
	(B)	Mare	· .	(B)	Mast cell	
	(C)	Sow		(C)	Myocyte	
	(D)	Hen		(D)	Plasma cell	
i9.		ostralse is present in :	64.		germ layer to be formed first in embryo:	
	(A)	Bitch		(A)	Ectoderm	
	(B)	Mare		(A) (B)	Mesodem	
	(C)	Sow		(C)	Endoderm	
	(D)	Cow		(D)	Neural crest cells	
30.	Lan	nina muscularis mucosae is		, ,		
		mplete in :	65.	•	phoblasts give rise for formation	
	(A)	Oesophagus		of: (A)	Yolk sac	
	(B)	Reticulum	٠.	(B)	Amnion	
	(C)	Omasum		(C)	Primitive streak	
	(D)	Abomasum		(D)	Placenta	
3 1.		nner's glands are present in :				
J 1,		Duodenum	66.	• •	ots of Lieberkuhn are present in:	
	(A)			(A)	Small intestine	
	(B)	Ileum		(B)	Stomach	
	(C)	Jejunum		(C)	Liver	
	(D)	Rectum		(D)	Pancreas	
62.	Has	sal's corpuscle is seen in :	67.	Delt	oid tuberosity is present in :	
	(A)	Bone marrow		(A)	Scapula	
	(B)	Spleen	٠.	(B)	Humerus	
	(C)	Thymus		(C)	Radius ulna	
	(D)	Lymph node		(D)	Metacarpal	
			(0)		Cantil	

88.	(A) F	er trochanter is seen in : Femur Tibia	74.	The following organism has been internationally accepted as the most suitable bacterial indicators for detecting recent sewage pollution of	
39.	(D) S	Metatarsus Sacrum cle is well developed in : Cow		water: (A) Enterococcus faecalis (B) Clostridium perfringens (C) Escherichia coli	
	(B) I	Mare Sow Hen	75.	(D) All of the aboveWater-borne diseases in human beings include:(A) Typhoid	
70.	(A)	s medullaris is seen in : Cerebellum Spinal cord		(B) Cholera(C) Hepatitis(D) All of the above	
	` '	Adrenal Cerebrum	76.	Viral diseases which can spread through air among human beings include:	
71.	(A) (B) (C)	tum lucidum is present in : Cornea Choroid Retina Lens	-71-77	(A) Influenza(B) Q-fever(C) Hepatitis(D) All of the above	
72.	Long (A) (B)	est nerve in the body is : Sciatic Trochlear Median	77.	Lagoons are: (A) Water filters (B) Shallows ponds (C) Anaerobic ponds (D) Septic tanks	
73.	(D) Smal (A) (B) (C) (D)	Vagus Ilest muscle in the body is : Soleus Stapedius Ciliary Anconeus	78.	Infections which spread through excreta include: (A) Salmonella (B) Mycobacterium paratuber-culosis (C) Enteroviruses (D) All of the above	
KC	– 1A/1	5	(9)	(Turn over)	

79.	Sewage with I	30D 500 mg/ℓ is		(B)	Hydatid disease
	categorized as:			(C)	Toxoplasmosis
	(A) Weak	•.		(D)	All of the above
	(B) Medium		84.	In w	hich of the following zoonotic
	(C) Strong		04.		eases birds play a role in
	(D) Very strong	3			smission to man?
80.	- .	ction in oxidation			
		parison to aerated		(A)	Salmonellosis
	lagoons is:			(B)	Campylobacteriosis
	` '	Less More Equal Sometimes less, sometimes		(C)	Influenza
	` '			(D)	All of the above
	•		85.	Ech	inococcosis is an example of :
	more			(A)	Obligatory cyclozoonosis
81.		oogleal layer play a		(B)	Anthropozoonoses
	very significant of:	role in the working		(C)	Metazoonoses
	(A) Tricking fil	ter		(D)	None of the above
	(B) Slow sand	l filter	86.	Zoo	noses forming natural foci in India
	(C) Both (A) a	nd (B)	•	are	•
	(D) None of the	ne above		(A)	Plague
82.	Rodent control will be useful in			(A) (B)	KFD
	prevention of:				
	(A) Leptospir	osis		(C)	Rabies
	(B) Plague			(D)	All of the above
	(C) Salmonel	losis	87.	Tae	niasist is an example of :

Obligatory cyclozoonosis

(D) None of the above

Metazoonosis

(A)

(B)

(D) All of the above

viscera of sheep:

(A) Trichinosis

83. Disease which can be controlled by

preventing dogs from eating raw

88.	Domociliated animal may be exemplified by:			In holder method of pasteurization, milk is exposed to:	
	(A)	Rats		(A)	100° C for 10 min 80° C for 20 min
	(B)	Cows		(B)	62.8° C for 30 min
	(C)	Horse		(C)	_
	(D)	Deer		(D)	55° C for 30 min
89.	Tube	erculosis in man affects :	94.		iculties are experienced in ling and ripening of cheese if
	(A)	Bones			contains:
	(B)	Joints		(A)	Antibiotic residue
	(C)	Respiratory system		(B)	Pesticide residue
	(D)	All of the above		(C)	Insecticide residue
90.	The	moisture content of hard cheese		(D)	All of the above
	in generally :			Con	sumption of even boiled milk
	(A)	35-40%		may	cause:
	(B)	40-45%		(A)	Tuberculosis
	(C)	70-80%		(B)	Brucellosis
	(D)	None of the above		(C)	Q-fever
91.		blowing of cheese is due to :		(D)	Staphylococcal gastroenteritis
	(A)	Coliforms	96.	According to BIS, the SPC in 'burfi'	
	(B)	Bacillus subtilis			uld not exceed :
		Clostridium butyricum		(A)	250/g
	(C)	·		(B)	3 × 10 ⁴
	(D)	Staphylococcus aureus		(C)	2 × 10 ⁶
92.	The	milk having an acidity of 0.72%		<u>(</u> D)	4×10^7
	will:		97.	Bitte	er taint and thinning of cream is
	(A)	Curdle on boiling		cau	sed by:
	(B)	Coagulate spontaneously		(A)	B. stearothermophilus
	(C)	Coagulate followed by		(B)	B. subtilis
		liquefaction		(C)	Coliforms
	(D)	Remain normal		(D)	Lactococci

(.11)

KC - 1A/15

(Turn over)

- 98. Shipping fever is a catarrhal and often fatal disease that occurs mainly due to long journey in:
 - (A) Rainy season
 - (B) Winter season
 - (C) Summer season
 - (D) Autumn
- 99. Canpak system of line dressing can process the number of cattle/hour:
 - (A) 50-75
 - (B) 50-150
 - (C) 100-200
 - (D) 100-250
- 100. The factors which influence the rate of rigor mortis in the carcass include:
 - (A) Atmospheric temperature
 - (B) Amount of glycogen
 - (C) Health of animal
 - (D) All of the above
- 101. Stunning by captive bolt pistol is considered to be the most effective in:
 - (A) Cattle
 - (B) Bull
 - (C) Sow
 - (D) Boar
- 102. In cattle during transport, the shrink rate is maximum in a period of :
 - (A) 0-12 h

- (B) 12-24 h
- (C) 24-36 h
- (D) 36-72 h
- 103. Prior stunning is always forbidden in the following method of slaughter of animals:
 - (A) Halal
 - (B) Jhatka
 - (C) Jewish
 - (D) All of the above
- 104. On slaughter of hunted animals, the onset of rigor mortis is usually:
 - (A) Very slow
 - (B) Very rapid
 - (C) Absent
 - (D) Not affected
- 105. A sheep carcass found affected with blue tongue virus should be:
 - (A) Passed for consumption
 - (B) Passed after removing tongue
 - (C) Condemned
 - (D) Heat processed
- 106. Presence of snake like calcified worms in egg albumin may be seen in infection of:
 - (A) Syngamus trachea
 - (B) Heterakis gallinarum
 - (C) Ascaridia galli
 - (D) None of the above

			446	5 1	en er
107.		se age resistance is seen in :	112.	Diroi	filaria immitis is transmitted by:
	(A)	Trypanosoma evansi		(A)	Lice
	(B)	Babesia bigemina		(B)	Fleas
	(C)	Plasmodium vivax		(C)	Mosquitoes
	(D)	All of the above		(D)	All of the above
108.	evil-	ffalo-calf passes mud-coloured, smelling faeces indicating tion of :	113.	follo	ermethrin belongs to the wing group of insecticides:
	(A)	Toxocara vitulorum		(A)	Chlorinated hydrocarbon
	(B)	Moniezia expansa		(B)	Organophosphate
	(C)	Strongyloides papillosus		(C)	Carbamate
	(D)	Avitellina centripunctata		(D)	Synthetic pyrethroid
109.		ansport host in which no	114.	The	follicular mite affecting cattle is :
		elopment of the parasite occurs own as :		(A)	Demodex spp.
	(A)	Intermediate host		(B)	Chorioptes spp.
	(B)	Paratenic host		(C)	Sarcoptes spp.
	(C)	Definitive host		(D)	Psoroptes app.
	(D)	None of these	115.	Eas	t Coast Fever is caused by :
110.	Tick	paralysis is associated with:		(A)	Theileria mutans
	(A)	Ixodes spp		(B)	Theileria annulata
	(B)	Argas persicus		(C)	Ţheileria sergenti
	(C)	Ornithodoros lahorensis		(D)	Theileria parva
	(D)	All of these	110		most pathogenic and prevalent
111.	•	arasite having narrow host range	110.		natode of sheep in India is:
		nown as :		(A)	Trichostrongylus
	(A)	Euryxenous parasite Stenoxenous parasite		(B)	Ostertagia
	(B)	Heteroxenous parasite		(C)	Haemonchus
	(C)	None of the above		(D)	None of the above

(D) None of the above

- 117. Following amphistome occurs in the bile duct of ruminants:
 - (A) Gastrodiscus aegyptiacus
 - (B) Gigantocotyle explanatum
 - (C) Gastrothylax crumenifer
 - (D) Pseudodiscus collinsi
- 118. Which of the following is not a soft tick?
 - (A) Hyalomma anatolicum
 - (B) Argas persicus
 - (C) Ornithodoros moubata
 - (D) Otobius megnini
- 119. Neurocysticercosis in human-beings is caused by:
 - (A) Cysticercus ovis
 - (B) Cysticercus bovis
 - (C) Cysticercus tenuicollis
 - (D) Cysticercus cellulosae
- 120. An association between two organisms where one is benefited, while other is neither benefited nor harmed, is:
 - (A) Mutualism
 - (B) Parasitism
 - (C) Commensalism
 - (D) None of the above
- 121. One of the most pathogenic coccidian parasites of cattle is:
 - (A) Eimeria cylindrica

- (B) E. Zuernii
- (C) E. alabamensis
- (D) E. canadensis
- 122. 'Surra' in cattle and buffaloes is caused by:
 - (A) Trypanosoma cruzi
 - (B) Trypanosoma gambiense
 - (C) Trypanosoma equiperdum
 - (D) Trypanosoma evansi
- 123. Blood fluke is the common name given to the following group of parasites:
 - (A) Ancylostomes
 - (B) Paramphistomes
 - (C) Schistosomes
 - (D) None of the above
- 124. 'Cooked rice grain' like segments are seen in the faeces of calves infested with:
 - (A) Avitellina spp
 - (B) Moniezia spp
 - (C) Stilesia spp
 - (D) All of the above
- 125. Triclabendazole is the drug of choice in case of:
 - (A) Schistosomosis
 - (B) Paramphistomosis
 - (C) Fasciolosis
 - (D) All of the above

- 126. Transport across the GI mucosal barrier is effective when:
 - (A) The drug is dissolved in GIT lumen
 - (B) The drug is stable chemically or enzymatically
 - (C) The drug is lipid soluble and not completely ionized
 - (D) All of the above
- 127. Microsomal oxidative enzyme includes:
 - (A) Aldehyde dehydrogenase
 - (B) Xanthine oxidase
 - (C) Monoamine oxidase
 - (D) None of the above
- 128. Various types of G-proteins are after the type of :
 - (A) α-subunit
 - (B) β-subunit
 - (C) y-subunit
 - (D) All of the above
- 129. Preferred route for implantation of pellets and depot preparation is:
 - (A) Intravenous
 - (B) Intramuscular
 - (C) Subcutaneous
 - (D) All of the above
- 130. Large molecular size polar compounds are preferentially excreted through:
 - (A) Renal

- (B) Billary
- (C) Pulmonary
- (D) All of the above
- 131. Which of the following species of animals is deficient in glucuronidation?
 - (A) Pigs
 - (B) Horses
 - (C) Cats
 - (D) All of the above
- 132. Microsomal oxidative enzyme includes:
 - (A) Aldehyde dehydrogenase
 - (B) Xanthine oxidase
 - (C) Monoamine oxidase
 - (D) None of the above
- 133. Various types of G-proteins are after the type of:
 - (A) α-subunit
 - (B) β-subunit
 - (C) γ-subunit
 - (D) All of the above
- 134. The Na⁺ 2Cl⁻ K⁺ symporter is inhibited by one of the following drugs:
 - (A) Mannitol
 - (B) Acetazolmide
 - (C) Piretanide
 - (D) All of the above

- 135. Which of the following is a mixed adrenergic antagonist?
 - (A) Metoprolol
 - (B) Phentolamine
 - (C) Labetalol
 - (D) All of the above
- 136. The effects of MAO inhibition can be reversed by one of the following drugs:
 - (A) Tyramine
 - (B) Octopamine
 - (C) Reserpine
 - (D) All of the above
- 137. Predominant adrenergic receptors in heart are:
 - (A) Alpha₁-adrenergic
 - (B) Alpha₂-adrenergic
 - (C) Beta,-adrenergic
 - (D) All of the above
- 138. Tocolytic action of ritodrine in mammals is related to the action produced in:
 - (A) Liver
 - (B) Uterus
 - (C) Heart
 - (D) None of the above
- 139. Centrally acting alpha₂-adrenergic agoinst like clonidine can be used to treat:
 - (A) Hypotension
 - (B) Hypertension
 - (C) Diabetes
 - (D) All of the above

- 140. Which of the following is a selective antagonist of M₂-mAChRs?
 - (A) Methacholine
 - (B) Methoctramine
 - (C) Darifenacine
 - (D) All of the above
- 141. Which of the following is a selective antagonist of M₃-mAChRs?
 - (A) Methacholine
 - (B) Methoctramine
 - (C) Darifenacine
 - (D) All of the above
- 142. Which of the following actions is not produced by sodium bromide when administered orally in dogs?
 - (A) Hypnotic action
 - (B) Anticonvulsant action
 - (C) Analgesic action
 - (D) All of the above
- 143. Chlorpromazine does not block which one of the following type of receptors?
 - (A) Dopamine receptors
 - (B) mAChRs
 - (C) Beta adrenergic receptors
 - (D) All of the above
- 144. Which of the following sedative is preferred in swines to prevent stress?
 - (A) Azaperone
 - (B) Droperidol
 - (C) Halopridol
 - (D) All of the above

145.	Phe	nobarbitone	used	as
	antie	pileptic for long	term du	ration
	may	lead to the side e	effect:	
	(A)	Polyphagia		
	(B)	Polydipsia		

- (C) Polyurea
- (D) All of the above
- 146. Benzodiazepines are primarily used for the control of:
 - (A) Tonic-clonic seizures
 - (B) Absence seizures
 - (C) Status epitepticus
 - (D) All of the above
- 147. Which of the following is metabolized to produce inactive metabolites?
 - (A) Primidone
 - (B) Phenylbutazone
 - (C) Chloral hydrate
 - (D) None of the above
- 148. Which of the following is alpha₂-adrenoceptor agonist?
 - (A) Xylazine
 - (B) Detomidine
 - (C) Medetomidine
 - (D) All of the above
- 149. Sulfonamide induced Keratoconjunctivitis Sicca occur mostly in:
 - (A) Dogs.
 - (B) Cattle
 - (C) Horses
 - (D) All of the above

- 150. Acetylation is the major pathway of sulfonamide metabolism in animals except in:
 - (A) Horses
 - (B) Cattle
 - (C) Dogs
 - (D) All of the above
- 151. Bacterial susceptibility to β-lactam antibiotics depends upon:
 - (A) Production of β-lactamases
 - (B) Permeability of cell wall
 - (C) Sensitivity of penicillin binding protein
 - (D) All of the above
- 152. Which of the following is a fourthgeneration cephalosporin?
 - (A) Cefepime
 - (B) Cefpirome
 - (C) Cefquinome
 - (D) All of the above
- 153. Aminoglycosides are more active in:
 - (A) Acidic pH
 - (B) Alkaline pH
 - (C) Neutral pH
 - (D) All of the above
- 154. Which of the following is not a broad spectrum aminoglycosides?
 - (A) Neomycin
 - (B) Streptomycin
 - (C) Kanamycin
 - (D) All of the above

155.	Ther	nost nephrotoxic agent among
	amin	oglycosides is :
	(A)	Neomycin
	(B)	Tobramycin
	(C)	Gentamycin
	(D)	All of the above
156.	One	the followings produces aplastic
		emia in human beings :
	(A)	Thiamphenicol
	(B)	Chloramphenicol
•	(C)	Florfenicol
	(D)	All of the above
157	. Whi	ch of the following quinolones is
	elim	inated unchanged from body?
	(A)	Ciprofloxacin
	(B)	Ofloxacin
	(C)	Pefloxacin
	(D)	All of the above
158	3. The	e prototype quinolone for use in
		mals is :
	(A)	Pefloxacin
	(B)	Ciprofloxacin
	(C)	Enrofloxacin
	(D)	All of the above
15	9. Va	ncomycin active against :
	(A)	G +ve bacteria
	(B)	G –ve bacteria
	(C)	G+ve bacteria and G-ve bacteria

- 160. Amphotericin B causes organ directed toxicity of :
 - (A) Liver
 - (B) Heart
 - (C) Kidneys
 - (D) All of the above
- 161. Which of the following is used against fungal infections?
 - (A) Bactracin
 - (B) Itraconazole
 - (C) Netobimin
 - (D) All of the above
- 162. Flucytosine is an:
 - (A) Antifungal agent
 - (B) Antiviral agent
 - (C) Antibacterial agent
 - (D) All of the above
- 163. Which of the following plant is a source of cyanide poisoning?
 - (A) Amaranthus retroflexus
 - (B) Astragalus hamosus
 - (C) Prunus laurocerasus
 - (D) Tribulus sp.
- 164. The animals fed on vegetation grown near the busy highway may suffer from chronic toxicity due to:
 - (A) Thallium
 - (B) Lead
 - (C) Chlorpyriphos
 - (D) Mercury

(D) All of the above

- 165. Most of the toxic principles of vegetable origin are:
 - (A) Lecithins
 - (B) Pectins
 - (C) Alkaloids
 - (D) Glycosides
- 166. Lead is transported in the body as:
 - (A) Lead acetate
 - (B) Lead citrate
 - (C) Lead phosphate
 - (D) Lead diphosphate
- 167. Arsenic, after its ingestion by the animal, is stored permanently in:
 - (A) Bones
 - (B) Keratinized tissues
 - (C) Skin
 - (D) All of the above
- 168. Ocharotoxin is produced by:
 - (A) Penicillium viridicatum
 - (B) P. citreoviridae
 - (C) P. notatum
 - (D) Fusarium tricinctum
- 169. Gangrenous changes occur in poisoning due to:
 - (A) Mercury
 - (B) Lead
 - (C) Malathion
 - (D) Ergot

- 170. Common salt poisoning is seen more in poultry than in animals as :
 - (A) Glomerular filtration area is less in poultry
 - (B) Chicks have indiscriminate feeding habits
 - (C) Plasma protein levels is low in poultry
 - (D) All of the above
- 171. The characteristic symptom of organic arsenic poisoning in swine is:
 - (A) Posterior paralysis
 - (B) Anterior paralysis
 - (C) CNS excitation
 - (D) All of the above
- 172. Blood flow to the bovine ovary is:
 - (A) Maximum during luteal phase
 - (B) At nadir just before ovulation
 - (C) Both (A) and (B)
 - (D) None of the above
- 173. The diameter of a mature corpus luteum, when compared with the diameter of a mature graffian follicle in a cow is:
 - (A) Smaller
 - (B) Larger
 - (C) Equal

(19)

(D) None of the above

- 174. In sow, pregnancy is dependent mainly upon progesterone produced from:
 - (A) Corpus luteum
 - (B) Placenta
 - (C) Adrenal gland
 - (D) CL and placenta
- 175. The oviducts atrophy and deciliate during:
 - (A) Pregnancy
 - (B) Anoestus
 - (C) Hypophysectomy
 - (D) All of the above
- 176. Mullerian Inhibiting substance is responsible for suppression of :
 - (A) Paramesonephric duct
 - (B) Müllerian duct
 - (C) Both (A) and (B)
 - (D) None of the above
- 177. Gubernaculum testis is a:
 - (A) Retained testis
 - (B) Half descended testis
 - (C) Inguinal ligament of gonad
 - (D) Testicular abnormality
- 178. In horses, epididymis enters inguinal canal:
 - (A) Along with testis
 - (B) After testis
 - (C) Before testis
 - (D) Simultaneously with testis

- 179. The testicular descend into scrotal occurs during last quarter of fetal life in:
 - (A) Bull
 - (B) Ram
 - (C) Boar
 - (D) Stallion
- 180. During sexual development sperms in Cauda Epididymis of a bull are seen at the age of :
 - (A) 16 weeks
 - (B) 20 weeks
 - (C) 40 weeks
 - (D) 60 weeks
- 181. After puberty the number of Sertoli cells:
 - (A) Decrease
 - (B) Increase
 - (C) Proliferate
 - (D) Neither increase nor decrease
- 182. The difference of scrotal temperature and rectal temperature in boar is:
 - (A) More than bull
 - (B) Less than bull
 - (C) Same as in bull
 - (D) None of the above
- 183. The convoluted duct of epididymis is very large in bull and boar and match the following:
 - (A) 22 and 40 meters
 - (B) 36 and 54 meters
 - (C) 40 and 60 meters
 - (D) 54 and 80 meters

- 184. Gel like portion of boar semen is secreted by:
 - (A) Seminal vesicle
 - (B) Prostate
 - (C) Bulbo-urethral gland
 - (D) Ampullae
- 185. The primordial germ cells arise:
 - (A) Intragonadally
 - (B) Extragonadally
 - (C) At the time of birth
 - (D) At the time of puberty
- 186. The number of oocytes decrease at:
 - (A) The time of birth
 - (B) The puberty
 - (C) Both (A) and (B)
 - (D) None of the above
- 187. In sows, maternal recognition of pregnancy is mainly due to the action of:
 - (A) Oxytocin
 - (B) Interferon tau
 - (C) Estrogen
 - (D) Prostaglandins
- 188. Most of the developmental anomalies occur during:
 - (A) Period of embryo
 - (B) Period of ovum
 - (C) Period of fetus
 - (D) During birth
- 189. Transformation of secondary spermatocytes to spermatids is known as:
 - (A) Spermatocytogenesis

- (B) Spermiogenesis
- (C) Spermateliosis
- (D) Spermiation
- 190. Attachment of ovum occur to the which of the following segment of sperm head?
 - (A) Apical
 - (B) Post-acrosomal
 - (C) Principal
 - (D) Equitorial
- 191. In boars, seminal vesicles produces which of the following osmotic pressure regulator?
 - (A) Ergothionine
 - (B) Citrate
 - (C) Inocitol
 - (D) Fructose
- 192. Most common type of uterine torsion is:
 - (A) Post cervical
 - (B) Right side
 - (C) Both (A) and (B)
 - (D) None of the above
- 193. For synchronization of oestrus which of the following hormone has disadvantage because of its long half life?
 - (A) Estrogen
 - (B) FSH
 - (C) PGF2α
 - (D) PMSG

- 194. Biochemical changes in blood of animals suffering from vagus indigestion is:
 - (A) Metabolic alkalosis
 - (B) Metabolic audosis
 - (C) Hypokalemic hypochloremic alkalosis
 - (D) None of the above
- 195. For the prevention of traumatic reticulo-peritonitis:
 - (A) Feed and fodder should be screened for any sharp metallic foreign body
 - (B) Animals should not be allowed to graze in the vicinity of factories or along side roads
 - (C) Both (A) and (B)
 - (D) None of the above
- 196. For the prevention of primary bloat:
 - (A) Mix the wheat straw with green fodder before offering it to animals
 - (B) Avoid feeding green fodder
 - (C) Both are true
 - (D) None of the above

- 197. Grain engorgement can be diagnosed by:
 - (A) Hyper-pyrexia
 - (B) Checking the rumen liquor pH
 - (C) Both (A) and (B)
 - (D) None of the above
- 198. For prevention of respiratory problems in ruminants :
 - (A) Vaccinate properly against HS
 - (B) Avoid dusty environment
 - (C) Both (A) and (B)
 - (D) None of the above
- 199. The disease causes hemorrhages in skeletal muscle:
 - (A) Infectious bursal disease
 - (B) Myeloblastosis
 - (C) Avian pox
 - (D) None of the above
- 200. Pock lesions on the chorioaliantoic membrane (CAM) are seen in :
 - (A) Infectious laryngotracheitis
 - (B) Marke's disease
 - (C) Avian Pox
 - (D) All of the above

SPACE FOR ROUGH WORK

DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO

. Test Booklet Series

TEST BOOKLET

T. B. C.: VS - 2 - 2018/19

SI. No:

Time Allowed : 2 Hours

SPECIAL RECRUITMENT TO VETERINARY ASSISTANT SURGEON

2021

PAPER - II

(ANIMAL SCIENCE)

Maximum Marks : 400

: INSTRUCTIONS TO CANDIDATES :

- IMMEDIATELY AFTER THE COMMENCEMENT OF THE EXAMINATION, YOU SHOULD CHECK THAT THIS TEST BOOKLET DOES NOT HAVE ANY UNPRINTED OR TORN OR MISSING PAGES OR ITEMS ETC. IF SO, GET IT REPLACED BY A COMPLETE TEST BOOKLET OF THE SAME SERIES ISSUED TO YOU.
- ENCODE CLEARLY THE TEST BOOKLET SERIES A, B, C OR D, AS THE CASE MAY BE, IN THE APPROPRIATE PLACE IN THE ANSWER SHEET USING BALL POINT PEN (BLUE OR BLACK).
- You have to enter your Roll No. on the Test Booklet in the Box provided alongside. DO NOT write anything else on the Test Booklet.
- YOU ARE REQUIRED TO FILL UP & DARKEN ROLL NO., TEST BOOKLET / QUESTION BOOKLET SERIES IN THE ANSWER SHEET AS WELL AS FILL UP TEST BOOKLET / QUESTION BOOKLET SERIES AND SERIAL NO. AND ANSWER SHEET SERIAL NO. IN THE ATTENDANCE SHEET CAREFULLY, WRONGLY FILLED UP ANSWER SHEETS ARE LIABLE FOR REJECTION AT THE RISK OF THE CANDIDATE.
- This Test Booklet contains 200 items (questions). Each item (question) comprises four responses (answers). You have to select the correct response (answer) which you want to mark (darken) on the Answer Sheet. In case, you feel that there is more than one correct response (answer), you should mark (darken) the response (answer) which you consider the best. In any case, choose ONLY ONE response (answer) for each item (question).
- You have to mark (darken) all your responses (answers) ONLY on the separate Answer Sheet provided by using BALL POINT PEN (BLUE OR BLACK). See instructions in the Answer Sheet.
- All items (questions) carry equal marks. All items (questions) are compulsory. Your total marks will depend only on the number of correct responses (answers) marked by you in the Answer Sheet.
- Before you proceed to mark (darken) in the Answer Sheet the responses to various items (questions) in the Test Booklet, you have to fill in some particulars in the Answer Sheet as per the instructions sent to you with your Admission Certificate.
- After you have completed filling in all your responses (answers) on the Answer Sheet and after conclusion of the examination, you should hand over to the Invigilator the Answer Sheet issued to you. You are allowed to take with you the candidate's copy / second page of the Answer Sheet along with the Test Booklet, after completion of the examination, for your reference.
- 10. Sheets for rough work are appended in the Test Booklet at the end.

DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO

Rice straw contains crude protein Who is the precursor of acetyl 6. 1. about: CoA? (A) 5% (A) **Butyrate** 3% (B) Propionate (B) (C) 0% (C) Acetate None of the above None of the above (D) (D) Cotton seed cannot mix in the diet of: Blood sugar level of a cow suffering 7. 2. from ketosis is round about: Pig ration (A) 80 mg/dl blood (A) Poultry ration (B) (B) Less than 40 mg/dl blood (C) Goat ration (C) More than 40 mg/dl blood (D) None of the above (D) Above than 80 mg/dl blood Pre starter broiler ration contain 8. critical methionine: Maintenance D. M. total requirement 3. of 400 kg crossed breed cows 3% (A) require: (B) 2% (A) 5-7 kg(C) 1.2% (B) 8-10 kg None of the above (D) (C) 11-13 kg Egg albumin is secreted by: 9. (D) 13-15 kg Infundibulum (A) T. D. N. term is appropriate with: 4. (B) Magnum (A) Fat Isthmus (C) (B) Energy (D) Uterus Protein (C) Luteinizing Hormone (LH) from the None of the above (D) 10. anterior pituitary causes: Which trace element is more critical 5. Release of a mature yolk (A) in swine among the element? (B) Oviduct to develop (A) Copper (C) increase in blood calcium (B) Manganese (D) Normal laying and secretion of

albumen

(C)

Zinc

(D) None of the above

- 11. The thyroid hormones affects:
 - (A) Metabolic rate of the bird
 - (B) Feather growth and colour
 - (C) All of the above
 - (D) None of the above
- 12. The tandem method of selection is preferred over independent culling level if :
 - (A) Genetic correlations between traits are desirable
 - (B) Phenotypic correlations between traits are positive
 - (C) No correlations between the traits
 - (D) None of the above
- 13. Family selection of the method of choice for traits with:
 - (A) Low heritability
 - (B) High heritability
 - (C) Expression in one sex only
 - (D) Large families
- 14. Proof that genetic variance exists at the stage of selection limit:
 - (A) If there is response to reserve selection
 - (B) If the population mean remains constant
 - (C) Heritability remains constant
 - (D) Reduction in phenotypic variance

- 15. Which is not the characteristic of the lines chosen for reciprocal recurrent selection?
 - (A) Differ in gene frequency
 - (B) High level of performance
 - (C) Inbreed
 - (D) Good combining ability
- 16. The superiority of a selection index in multi trait selection largely depends upon the accuracy of estimation of:
 - (A) Heritability of the trait
 - (B) Relative weights of the traits
 - (C) Genetic and phenotypic variance and convariance
 - (D) Repeatability of the traits
- 17. The effective number of parents under pedigreed random breeding control populations will be:
 - (A) 1/Ne = 1/4 M + 1/4F
 - (B) 1/Ne = 3/16 M + 1/16F
 - (C) 1/Ne = 3/32 M + 1/32F
 - (D) 1/Ne = 3/32 M + 1/32F
- 18. The goal of the selection can be defined under:
 - (A) Artificial selection
 - (B) Natural selection
 - (C) Both (A) and (B)
 - (D) None of the above

19.	Which one is not a polysaccharides? (A) Raffinose	24.	Which is non-glycerol based lipid?
	(B) Dextrins		(A) Lecithines
	(C) Inulin		(B) Cephalines
	(D) Cellucose	•	(C) Triolein
20.	In birds the main end product of protein metabolism are:		(D) Steroids
	(A) Uric acid	25.	Which is the main non-protein
•	(B) Allantoin		nitrogenous component of Berseem
	(C) Urea nitrogen		herbage?
	(D) Nitrate nitrogen		(A) Ammonia Nitrogen
21.	Which is not classified as basic		(B) Amide Nitrogen
	amino acid ?		(C) Amino Nitrogen
	(A) Arginine		(D) Nitrate Nitrogen
	(B) Valine		(D) Milato Milagon
	(C) Histidine	26.	Which of the following is essential in
	(D) Lysine		prevention of perosis in chicks?
22.	Which one of the following is not a		(A) Choline
	saturated fatty acid ? (A) Palmitic acid		(B) Biotin
	(A) Palmitic acid (B) Arachidic acid		(C) Folic acid
	(C) Stearic acid		(D) Pantothenic acid
	(D) Arachidonic acid	27.	Who was the first to unravel the
23.	Which of the following was also		secret of biological reproduction and
	considered lately as an essential		heredity?
	mineral?		(A) Charles Darwin
	(A) Zinc		(B) Thomas Hunt Morgan
	(B) Cobalt		
	(C) Selenium		
	(D) Chromium		(D) James D. Watson

(4)

28.	The r	nahogany and red colors in		(C)	Sex-linked trait
	cattle	represent a good example to		(D)	Sex-influenced trait
	illustra	ate:	33.	The	epistasis type of gene action is
	(A)	Sex-influenced inheritance			rtant for growth rate in poultry.
	(B)	(B) Sex-limited inheritance			refore, the type of selection tices is:
	(C)	Sex-linked inheritance		(A)	Recurrent Selection
	(D)	None of the above		(B)	Pedigree Selection
29.	The	first case of mutation was		(C)	Reciprocal Recurrent Selection
	disco	vered in :		(D)	All of the above
	(A)	Drosophila	34.	Man	ifold effects of a gene refer to :
	(B)	Garden pea		(A)	Penetrance
	(C)	Male lamb		(B)	Expressivity
	(D)	Neurospora		(C)	Pleiotropy
0.0		·		(D)	Epistasis
30.	utilize	rrent selection is practised to	35.		to the phenomenon of
	(A)	Dominant deviation			eeding depression is its
	(A) (B)	Additive variance		• •	osite, 'hybrid vigour' or erosis'.
	(C)	Non-additive variance		(A)	Complementary
	(D)	Environmental variation		(A) (B)	Supplementary
31.	Sele	ction is effective for those traits		(C)	Additive
01.		h are governed by :		(D)	Multiplicative
	(A)	Additive genes	00	• •	•
	(B)	Dominant genes	36.		magnitude of inbreeding fficient of close inbreeding under
	(C)	Epistatic genes	•,		sib mating reaches 0.500 after
	(D)	All of the above			generation.
32.	Sib	selection in cattle is		(A)	2
	reco	mmended for :		(B)	3
	(A)	Six-linked trait		(C)	4
	(B)	Sex-limited trait		(D)	5
KC	– 2AJ	15	(5)		(Turn over)

37.	In a statistical hypothesis testing experiment, what type of error is committed by rejecting the null hypothesis when it is true: (A) Type-I (B) Type-II (C) Type-I and Type-II (D) None of the above Which of the following has maximum chromosome number? (A) Pig (B) Horse	42 .	Normal body temperature of cattle is (°F): (A) 100.8-102.4 (B) 100.4-101.7 (C) 100.9-102 (D) 101.6-103 Which of the following animal has maximum pulse rate? (A) Horse (B) Cattle (C) Pig (D) Dog
	(C) Camel (D) Dog	44.	One ml of ejaculate of bull have how many million of sperms?
39.	Meat of buffalo is known as: (A) Beef (B) Carabeef (C) Mutton (D) Chevon		(A) 1100(B) 1300(C) 1500(D) 1800
40.	Which animal contribute maximum to	45.	Silent heat occurs in cow (in days)

3.	Whi	ch of the following animal has
	max	imum pulse rate ?
	(A)	Horse
	(B)	Cattle
	(C)	Pig
	(D)	Dog
4.	One	ml of ejaculate of bull have how
	man	y million of sperms ?
	(A)	1100
	(B)	1300
	(C)	1500
	(D)	1800
1 5.	Sile	nt heat occurs in cow (in days)
	post	partum is :
	(A)	10-13
	(B)	13-15
	(C)	15-18
	· (D)	60
16.	Age	of sexual maturity in cattle (in
	year	rs) is:
	(A)	1-2
	(B)	2-8

the milk production of India?

41. Gestation period of cow and buffalo

respectively (in days) are:

(A) 310 and 282

(B) 282 and 310

(C) 336 and 250

(A) Goat

्रक्तकेष(**ⓒ**) ⊨ Cow

(D) Sheep

(B) Buffalo

(C) 2-3

(D) 4-5

47.	maxin (A) ((B) I	eed conversion efficiency is num in : Cattle Poultry Pig	52.	Which of the following is absorbed in omasum? (A) Water (B) Volatile fatty acid (C) Both of the above
48.	Mixed the fo (A) (B) (C) (D)	Camel I farming incorporates which of llowing? Crop production Animal production Both of the above Mixed crop production	53.	 (D) None of the above Which of the following breed of buffalo has maximum milk fat percentage in its milk? (A) Murrah (B) Jaffarabadi (C) Mehsana (D) Nagpuri
49.	fishes (A) (B) (C)	h river is richest fresh water s source in India ? Jamuna Chambal Ganga Narmada	54 .	Central cattle breeding farm for Thaparkar is located at: (A) Suratgarh (B) Jaisalmer (C) Sirsa (D) Hissar
50.	(A) (B) (C) (D)	eton of foetus is made up of : Bone only Cartilage only Mostly bone Mostly cartilage	55.	NDRI is situated at : (A) Izzatnagar (B) Karnal (C) Delhi (D) Ludhiana
51.		ch structure is between the bone one join? Ligament Tendon Both (A) and (B) None of the above	56.	Which method is useful for experimental farm? (A) Artificial insemination (B) Flock system (C) Pen system (D) Hand system
KC	- 2A/1	15	(7)	(Turn over)

57.	Why close grazing occurs in sheep?			Ham is:		
	(A)	Due to small muzzle		(A)	Which comes from back and	
	(B)	Due to split upper lip			join	
	(C)	Both (A) and (B)		(B)	Which comes from sides	
	(D)	None of the above		(C)	Comes from join and sides	
58.	How much water is needed for an adult sheep?			(D)	Comes from rear quarters	
					Nutritional deficiency occur more in	
	(A)	A) 2 litre water / day during winter			th of the following?	
	(B)	3.5-4 litre water / day during		(A)	Pig	
		summer		(B)	Ruminant	
	(C)	2-3 litre water / every 1 kg of	-	(C)	Both (A) and (B)	
		dry feed		(D)	Camel	
	(D)	All of the above	64.	Fatf	rom pig carcass after it has been	
59.	Goat meat from which breed is more			tend	lered is known as :	
	delicious:			(A)	Gammon	
	(A)	Black Bengal and Angora		(B)	Lard	
	(B)	Chevon Nubian		(C)	Ham	
	(C)	Chigu and Changthangi		(D)	All of the above	
	(D)	Marwari and Beetal	65.	` '	e 1 101 1 11b	
00	(- /			Pres	ssure of hand milking should be:	
60.	_	estation heat present in goat?		(A)	25-40mm of Hg	
	(A)	Yes No		(B)	25-50 mm of Hg	
	(B) (C)	May be		(C)	35-40 mm of Hg	
	(D)	Depend on age		(D)	35-50 mm of Hg	
61.	Whi	Which contributes richness of flavour		Spe	cific gravity of milk is :	
	of m	nilk?	66.	(A)	0.94	
	(A)	Phospholipid		(B)	1	
	(B)	Galactolipid			1.030	
	(C)	Glycolipid		(C)		
	(D)	Cholesterol		(D)	1.050	

67.	Which is the most heat tolerate exotic	72. What happens in crossing over?
	breed of cattle?	(A) Duplication of chromosome
	(A) H.F.	(B) Linkage in chromosome
	(B) Jersy	(C) Minimization in genetic
	(C) Ayreshire	material
	(D) Brown Swiss	(D) Exchange of genetic material
68.	The factor responsible for initiating	73. Role of mutation in evolution is:
1	cell division is:	(A) Reproductive isolation
	(A) Cytoplasmic index	(B) Genetic variation
	(B) DNA	(C) Genetic drift
	(C) Karyoplasmic index	(D) None of the above
	(D) Nucleus	
69.	Crossing over takes place between:	74. Which is a tetrasomic condition?
	(A) Sister cromatid	(A) 2n – 1
	(B) Non-sister cromatid	(B) 2n + 1 + 1
· ·	(C) Chromosome	(C) 2n + 2
	(D) Chromonema	(D) 2n+3
70.	The type of cell division which takes	75. Mutation induced by 5-Bromouracil
70.	place only once in cell lifetime, is	are:
	called:	(A) Transversional mutation
	(A) Amitosis	(B) Transitional mutation
	(B) Meiosis	(C) Frame shift mutation
	(C) Mitosis	(D) Backward mutation
	(D) Free cell division	76. Enzyme useful in genetic engineering
71.	Crossing over takes place in:	(is: 1.00) (is: 1.00) (is: 1.00)
	(A) Mitosis	(A) Lipase
	(B) Meiosis I	(B) DNA ase
	(C) Meiosis II	(C) Restriction endonuclease
	(D) All of the above	(D) Amylase
KC	2A/15	(9) (Turn over)

77.	Daughter of colour blind father and normal mother marries a normal person. Colour blindness in the family shall be:			
	(A)	50% sons		
	(B)	50% daughter		
	(C)	50% offspring		
	(D)	50% son and 50% daughter		
78.	Süm	total of genes in population is:		
	(A)	Genotype		
	(B)	Phenotype		
	(C)	Karyotype		
	(D)	Gene pool		
79.	non-	enzyme which combines with a protein prosthetic group to form actional enzyme is called:		
	(A)	Coenzyme		
	(B)	Proenzyme		
	(C)	Holoenzyme		
	(D)	Apoenzyme		
80.	-	omosome which do not have tromere is called:		
	(A)	Monocentric		

82.	Mito	sis can occur in which of the
	follo	wing?
	(A)	Haploid cells
	(B)	Diploid cells
	(C)	Polyploid cells
	(D)	All of the above
83.	The	minimum number of chiasmata
	in a	pair is :
	(A)	One
	(B)	Two
	(C)	Three
	(D)	Four
. 84.	Dur	ing karyokinesis the
	chro	mosome exhibit minimum coiling
	at w	hich phase?
		hich phase ? Prophase
	(A)	•
	(A) (B)	Prophase
	(A) (B) (C)	Prophase Metaphase
85.	(A) (B) (C) (D)	Prophase Metaphase Anaphase
85.	(A) (B) (C) (D)	Prophase Metaphase Anaphase Interphase
85.	(A) (B) (C) (D) Droi (A)	Prophase Metaphase Anaphase Interphase nes are:
85.	(A) (B) (C) (D) Droi (A) (B)	Prophase Metaphase Anaphase Interphase nes are: Sterile males
8 5 .	(A) (B) (C) (D) Droi (A) (B) (C)	Prophase Metaphase Anaphase Interphase nes are: Sterile males Sterile females

toxic?

Ammonia

Uric Acid

Trimethyl amine oxide

Urea

(A)

(B)

(C)

(D)

(B)

(C)

(A)

(B)

(C)

81.

Diacentric

Acentric

Polycentric

karyotype is called:

Cladogram Cryptogram

Idiogram¹⁹

All of the above

Diagrammatic regresentation of the

		variance ratio in case of 'F' test than one.	92.	H. J. Muller reported that the X-rays induces:		
	(A)	Less		(A)	Selection	
	(B)	More		(B)	Mutation	
	(C)	Equal		(C)	Migration	
	(D)	None of the above		(D)	Aberration	
88.	Most efficient form of breeding is:		93.	Con	mmon wheat with 42	
	(A)	Inbreeding		chro	omosomes is :	
	(B)	Out-breeding		(A)	Tetraploid	
	(C)	Both of the above		(B)	Triploid	
	(D)	None of the above		(C)	Octaploid	
89.	Inhra	eeding coefficient is a measure		(D)	Hexaploid	
00.		crease of :	94.	The	e sex chromosomes of females	
	(A)	Homozygosity		and males are respectively:		
	(B)	Heterozygosity		(A)	XX in females and XY or (XO)	
	(C)	Both (A) and (B)			in males	
	(D)	None of the above		(B)		
00	Breeding system by which a few pure			(C)		
90.		ed sires can rather quickly		(D)	XX in females and XX in males	
	tran	sform a nondescript population the purebred is called:	95.	Dr. Hargobind Khurana has been awarded Nobel Prize for research		
	(A)	Cross-breeding	٠.	on:	:	
	(B)	Live breeding		(A)	Oral contraceptives	
	(C)	Out crossing		(B)	Hormones	
	(D)	Grading up		(C)	Genetic code	
91.	Who described the operon concept			(D)) immunology	
01,	in E. coli?		96.	Name the bread of poultry with bl		
	(A)			meat:		
	(B)	Hugo de Varies, Muller		(A)	Aseel	
	(C)	Miller, Muller		(B)	Tellichery	
	(D)			(C)) Kadaknath	
	` '	Monod		(D)) All of the above	
KC	– 2A	/15	(11)		(Turn over)	

97.	Doub	ole humped camels are found	102.	Phos	phorylase A converts :	
	in :	•		(A)	Glucose to fructose	
	(A)	Rajasthan		(B)	Fructose to glucose	
	(B)	Gujarat		(C)	Glycogen to glucose 1-p	
	(C)	Ladakh		(D)	None of the above	
	(D)	All of the above	103.	Incre	eased NADPH will favour the	
98.	Pashmina is obtained from:			formation of:		
	(A)	Angora rabbit		(A)	Saturated fatty acids	
	(B)	Angora goat		(B)	Unsaturated fatty acids	
	(C)	Karakul sheep		(C)	None of the above	
	(D)	None of the above		(D)	All of the above	
99.	Prea	nancy feeding allowance in cow	104.	Stard	ch is hydrolysed by :	
	should start after:			(A)	Amylase	
	(A):	6 months		(B)	Phosphorylase	
	(B)	8 months		(C)	Hexokinase	
	(C)	3 months		(D)	None of the above	
	(D)	None of the above	105.	Test	osterone is secreted by:	
100.	The	human liver cannot produce :		(A)	Germinal epithelium	
	(A)	Starch		(B)	Interstitial cells	
	(B)	Glycose		(C)	Serioli cells	
	(C)	Glycogen		(D)	None of the above	
	(D)	None of the above	106.	Cas	tration of the male calf causes	
101.	TCA cycle is operative in :			total loss of:		
	(A)	Mitochondria		(A)	Erection	
	(B)	Microsomes		(B)	Ejaculation	
	(C)	Cytosol		(C)	Sexual desire	
	(D)	None of the above		(D)	All of the above	

(12)

KC - 2A/15

Contd.

- 107. A small amount of progesterone is required for the :
 - (A) Maintenance of corpus luteum
 - (B) Noncontractile condition of the uterus
 - (C) Ovulation
 - (D) None of the above
- 108. In case of rodents the hormone that is responsible for maintenance of corpus luteum is:
 - (A) Follile stimulating hormone
 - (B) Luteinizing hormone
 - (C) L. T. H.
 - (D) None of the above
- 109. In the development of under estrogen takes part in causing:
 - (A) Tubular development
 - (B) Alveolar development
 - (C) Development of milk cistern
 - (D) None of the above
- 110. Clinical significance of vagus nerve increase and prostaglandin fibre is:
 - (A) Motor
 - (B) Sensory
 - (C) Mixed
 - (D) None of the above
- 111. Signs of persistent oestrus at frequent but irregular intervals lead to:
 - (A) Nymphomania

- (B) Split oestrus
- (C) None of the above
- (D) All of the above
- 112. Ketone bodies include which of the following?
 - (A) Aceto-acetic acid
 - (B) Acetone
 - (C) Beta hydroxybutyric acid
 - (D) All of the above
- 113. The quality of glomerular filtrate formed each minute in all the nephrons of both the kidneys is called:
 - (A) GF
 - (B) GFR
 - (C) FGC
 - (D) None of the above
- 114. The hormones are chemically or steroid in nature:
 - (A) Protein
 - (B) Fat
 - (C) Vitamins
 - (D) Sterol
- 115. Amino acids which are not synthesized in the body are known as:
 - (A) Non-essential
 - (B) Essential
 - (C) Both (A) and (B)
 - (D) None of the above

- 116. The principal function of colon is _____ of water and electrolytes from the chime.
 - (A) Absorption
 - (B) Excretion
 - (C) Both (A) and (B)
 - (D) None of the above
- 117. Secretions of seminal vesicles:
 - (A) Is alkaline
 - (B) Is of no importance to reproduction
 - (C) Is mucoid
 - (D) None of the above
- 118. Which of the following is not an anticoagulant?
 - (A) Heparin
 - (B) Sodium oxalate
 - (C) Calcium chloride
 - (D) EDTA
- 119. Ovulation can occur at ovulation fossa in which of the following species?
 - (A) Ewe
 - (B) Cow
 - (C) Horse
 - (D) None of these
- 120. Sodium pump decreases the concentration of sodium ions inside the nerve fiber to:
 - (A) 5m Eq/1
 - (B) 10m Eq/1
 - (C) 142m Eq/1
 - (D) 150m Eq/1

- 121. Successful embryo development in the recipients is dependent:
 - (A) On the age and stage of embryonic development at the time of transfer
 - (B) On the uterine environment of the recipient only
 - (C) On the level of maternal plasma estrogen
 - (D) All of the above
- 122. In the parturition process:
 - (A) The oxytocin increase is followed by prostaglandin increase
 - (B) The oxytocin increase is preceded by prostaglandin increase
 - (C) Oxytocin and prostaglandin act simultaneously
 - (D) None of the above
- 123. The hypothalamus contains centre which can:
 - (A) Increase the rate of heat loss
 - (B) Decrease the rate of heat production
 - (C) Decrease the rate of heat loss
 - (D) All of the above
- 124. Cold stress increases the hormonal output of:
 - (A) Adrenal medulla
 - (B) Adrenal cortex
 - (C) Thyroid
 - (D) All of the above

125.	Which hormones when excessively secreted results in alkalosis?		130.	Oxytocin synthesis occurs in which of the following structures of the		
	(A) Growth hormone		٠. `	brair	1?	
	(B)	Cortisol		(A)	Basal ganglia	
	(C)	Aldosterone		(B)	Hypothalamus	
	(D)	Anti-diuretic hormones		(C)	Medulla oblongata	
126.	The	commonly used drug that can be	!	(D)	Cerebellum	
	employed to super ovulate mare:			31. Na+ is retained under the influence		
	(A) PMSG		:01.	of:	is retained under the initiation	
	(B)	Equine follicle stimulating	l	(A)	Aldosterone	
		hormone		(B)	Anti-diuretic hormone	
	(C)	Equine chorionic gonadotropi	1	(C)	Oxytocin	
	(D)	Stilboesterol		(D)	All of the above	
127.	The	inhibin is secreted from cell of :	122		e of cattle is of what nature?	
	(A)	Leydig	132.			
	(B)	Sertoli		(A)	Acidic	
	(C)	Epididymis		(B)	Basic	
	(D)	None of the above		(C)	Neutral .	
128.	The	endocrine glands are :		(D)	None of the above	
	(A)	7	133	Whi	ich part of ruminant stomach is	
	(B)	65		kno	wn as pouch?	
	(C)	6		(A)	Rumen	
	(D)	25		(B)	Reticulum	
129.	Pan	creatic trypsinogen is converted	1	(C)	Omasum	
	to Trypsin by which of the following			(D)	Abomasum	
	enzyme mainly present in the		134	134. Length of rumen papilla is		
	duodenal juice?			(A)	1 cm	
	(A)	Pancreozymine	٠.	•		
	(B)	Peptidase		(B)	10 cm	
	(C)	Enterokinase		(C)	1 m	
	(D)	Carbonic anhydrase		(D)	20 cm	
KC-	– 2A/	15	(15)		(Turn over)	

135.	Nb ₄ O ₈ have Iron is:	140.		l blood flow is controlled by juxta erular cells through :	
	(A) Fe++		•	Rennin angeotensin system	
	(B) Fe+++		· .	Prostaglandins of medulia	
	(C) Both (A) and (B)			and the second of the second o	
	(D) None of the above			Epinephrine	
136.	Respiratory pressure of O ₂ in arterial		(D)	All of the above	
	blood is:		Perce	entage of CH ₄ in rumen is:	
	(A) 48 mm Hg		(A)	7	
	(B) 46 mm Hg	٠	(B)	65	
	(C) 40 mm Hg		(C)	6	
	(D) 50 mm Hg		(D)	25	
137.	RBC membrane impermeable to		Percentage of CO ₂ in rumen is:		
-	which of the following?		(A)	7	
	(A) Cation		(B)	65	
	(B) Anion of the least that the least the leas		(C)	6	
	(C) Both (A) and (B)		(D)	25	
	(D) None of the above	440			
138.	Which of the following is the rate of		Total protozoa (X10 ⁶) in buffalo is which of the following?		
*	respiration in cow?	* 1.			
	(A) 12		(A)	1-2	
	(B) 36		(B)	2-11	
	(C) 26			·3-20	
	(D) 30		(D)	1.5-8	
139.	Clinical condition of bluishness of		. Types of bacteria in rumen is which		
	skin and mucosa is known as:		of the	e following?	
	(A) Bluinosis		(A)	Gram-veccoci	
	(B) Cyanosis		(B)	Non-spore formation	
	(C) Blackness		(C)	Anaerobes	
	(D) All of the above		(D)	All of the above	

145.		uscle possess higher water	149.	The	permitted antioxidant in ghee
	(A)	Rigor state		(A)	вна
	(B)	Pre-rigor state		(B)	ВНТ
	(C)	Post-rigor state		(C)	NDGA ·
	(D)	Any of the above		(D)	Ethyl gallate
146.	When collagen is heated in the water		150.	Salmonellosis is an example for which of the following?	
	to 80	0°C : Collagen remains insoluble		(A)	Infectious type of food poisoning
	(B)	Collagen begins to be converted into gelatine		(B)	Non-infectious type of food poisoning
	(C)	Collagen fibres gets only		(C)	Chemical food poisoning
		shortened		(D)	None of the above
	(D)	Any of the above	151.	Prof	ein content of white meat is :
147.	Mos	t aluminium foil used is known to		(A)	Lesser than red meat
	be d	ead soft which has good folding		(B)	Higher than red meat
	char	acteristics which belongs to:		(C)	Equal than red meat
	(A)	"O" temper		(D)	No comparison with red meat
	(B)	"H-12" temper	152.	Whi	ich is firm meat ?
	(C)	"H-14" temper		(A)	Pork
	(D)	All of the above		(B)	Chevon
148.	Asn	er PFA standards, the maximum		(C)	Mutton
	•	for added diacetyl content in		(D)	Chicken
	desi	ni butter is :	153.	Max	kimum fat present in which meat?
	(A)	3 ppm		(A)	Carabeef
	(B)	5 ppm		(B)	Beef
	(C)	2 ppm		(C)	Pork

(D) Nil

(C) 2 ppm

(D) Rabbit

154.		ch is maximum SPC for eurized milk?		(C)	3 weeks
	(A)	0/ml		(D)	O-10 Weeks
	(B)	100/ml	160.	Curi	ng solution known as:
	(C)	30,000 / ml		(A)	Salt pater
	(D)	1 lac/ml		(B)	Salt
		110071111		(C)	Pickle
155.	Acid treatment of collagen produce: (A) Collagen		•	(D)	All of these
			161	Whi	ch is bacterial in smoking?
	(B)	Elastin	101.	(A)	Hoho
	(C)	Gelatine		• •	Phenol
	(D)	Reticulin		(B)	
156.	Whic	ch meat has cherry red colour?		(C)	Both (A) and (B)
	(A) Mutton			(D)	Saw dust/hard wood
	(B)	Pork	162.	Whi	ch heat is more effective?
	(C)	Chevon		(A)	Moist
	(D)	Beef	٠.	(B)	Diy
157	Brown colour of meat is due to:			(C)	Mixture
107.				(D)	60: 40 combination
	(A)	Oxyhaemoglobin	163	Evtr	a chromosomal piece is known
•	(B)	Oxymyoglobin	. 100.	as:	a cili ottiosomai pioso is ittioani
	(C)	Methmyoglobin			Cosmid
	(D)	All of these		(B)	Episome
158.	Meat is more firm :			1.7	Plasmid
	(A)	In older animal		(C)	
	(B)	During chilling		(D)	Bacteriophage
	(C)	Both (A) and (B)	164		olymerase chain reaction which of
	(D)	In younger animal		the	following is required essentially?
159.	Shelf life of vacuum packaging cuts			(A)	DNA ligase
	for lambs is:			(B)	DNA primer
	(A)	10 days		(C)	DNA polymerase
	(B)	2 weeks		(D)	None of the above
KC-	- 2A/	15	(18)		Contd.

- 165. Antibodies that recognize only one epitop and derived from a single clone is called:
 - (A) Polyclonal antibodies
 - (B) Monoclonal antibodies
 - (C) Monovalent antibodies
 - (D) Bivalent antibodies
- 166. The initiation codon for translation in prokaryotes is:
 - (A) UGA
 - (B) AUG
 - (C) GAU
 - (D) UUA
- 167. ELISA rest essentially required which of the following?
 - (A) Antigen, antibody and conjugate
 - (B) Antigen, antibody, substrate and ELISA plate
 - (C) Antigen, antibody, conjugate, substrate and ELISA plate
 - (D) Antigen, antibody and ELISA plate
- 168. Who associated with Hybridoma Technology?
 - (A) Saiki
 - (B) Butler and Chase
 - (C) Zinkernagel and Doharty
 - (D) Kohler and Milestein
- 169. Number of base pair units in a single turn of DNA is:
 - (A) 4:

- (B) 6
- (C) 8
- (D) 10
- 170. At pH, the direction of glutamic acid in electrophoresis is towards:
 - (A) Cathode
 - (B) Anode .
 - (C) No migration
 - (D) Both cathode and anode
- 171. The pH of a buffer to be used for the separation of Lysine and Histidin in cation exchange column is:
 - (A) 2
 - (B) 4
 - (C) 8
 - (D) 12
- 172. The metabolism of amino acid is initiated by:
 - (A) Deamination
 - (B) Hydrogenation
 - (C) Amination
 - (D) None of the above
- 173. In the Watson-Crick model for the DNA the distance between the 1' carbons on the deoxyribose moieties of A + T or G + C were:
 - (A) 1.1 nm
 - (B) 2.1 nm
 - (C) 3.1 nm
 - (D) Different always

17 <i>A</i>	ln n	olymerase chain reaction,	179.	Sma	all molecule contaminants from	
1174	number of oligonucleotide primers			a protein can be removed by:		
		are:		(A)	Filtration	
	(A) One			(B)	Dialysis	
	(B)	Five		(C)	Solvolysis	
	(C)	Four		(D)	Solvent partition	
	(D)	Two	400			
175.	The	lethal gene ratio is:	180.		ch of the following is an amino without chiral centre?	
	(A)	8:1		(A)	Glycine	
	(B)	2:1		(B)	Serine	
•	(C)	4:1		(C)	Threonine	
	(D)	1:1		(D)	Tryptophan	
176.	The	fragments of DNA attached to an				
		A initiator component was	181.		munity Development Programme	
	discovered by :			were introduced in India for rural		
	(A)	Watson and Crick			elopment:	
	(B)	Okazaki		(A)	In early 40's	
	(C)	Peterson		(B)	In early 50's	
	(D)	Nelson		(C)	In early 60's	
177.	The	carbon atom at position 4 and 5		(D)	In early 70's	
	and	the nitrogen atom at the position	182.	Nev	v name of V. L. W. is :	
	7 of	purine base are supplied from:		(A)	V. L. O.	
	(A)	Valine		(B)	V. D. O.	
	(B)	Alanine		(C)	R. D. O.	
	(C)	Glycine		(D)	None of the above	
	(D)	Serine	100		long term requirement the	
178.	. In p	rotein synthesis 'start' signal is	100		ners do not depend upon:	
	mad	le by codon :		(A)	Government	
	(A)	UAG		, ,	_	
	(B)	UAA		(B)	Land Development Banks The Manay Landers	
	(C)	UGA		(C)	The Money Lenders	
	(D)	AUG		(D)	Cooperative Credit Societies	

- 184. The development plans of a district and coordination of activities of a Panchayat Samiti is responsibile to which of the following?
 - (A) Gram Pradhan
 - (B) Pramukh
 - (C) Zila Parishad
 - (D) Block Development Officer
- 185. Rural Development Programme should be formed to meet:
 - (A) Short term changes
 - (B) Emergent situation
 - (C) Long term changes
 - (D) All of the above
- 186. The First Agricultural University of India is:
 - (A) P.A.U., Ludhiana (Punjab)
 - (B) H. A. U., Hissar (Haryana)
 - (C) A. P. A. U., Hyderabad (AP)
 - (D) B. B. P. U. A & T., Patnagar (UP)
- 187. A good extension programme should be:
 - (A) Flexible
 - (B) Rigid
 - (C) Both (A) and (B)
 - (D) None of the above
- 188. The idea of having a village guide in each village for introducing new skills among the rural people was introduced by:
 - (A) R. N. Tagore

- (B) B. P. Pant
- (C) Mahatma Gandhi
- (D) F. L. Braynew
- 189. Special Livestock Production Programme was initiated in:
 - (A) 1974-75
 - (B) 1979-80
 - (C) 1978-79
 - (D) 1981-82
- 190. The national level body for policy formulation of rural development programme in our country is:
 - (A) National Development Council
 - (B) Planning Commission
 - (C) Price Commission
 - (D) None of the above
- 191. TV includes:
 - (A) Audio and visual both devices
 - (B) Visual device
 - (C) Audio device
 - (D) Not known, it is complicated item
- 192. Family of one male with many wives is known as :
 - (A) Polyandrous family
 - (B) Polygynous family
 - (C) Both (A) and (B)
 - (D) None of the above

- 193. Ancestral property inheritance from male to male is property of which family?
 - (A) Nuclear family
 - (B) Combined family
 - (C) Patrilineal family
 - (D) Matrilineal family
- 194. Collection of more than one set of people to solve a joint problem is known as:
 - (A) Client system
 - (B) Cooperative system
 - (C) Cummulative system
 - (D) Social system
- 195. Process by which individual maintain contract with its environment:
 - (A) Fidelity
 - (B) Perception
 - (C) Feedback
 - (D) Communication gap
- 196. Determine the suitability of new practice in prevailing situation is:
 - (A) Adaptive trial
 - (B) Mini kit trial
 - (C) Determining trial
 - (D) Both (A) and (B)

- 197. Decision not to adopt an innovation is known as:
 - (A) Implementation
 - (B) Rejection
 - (C) Persuasion
 - (D) Predictability
- 198. Written form of extension teaching methods does not include which of the following?
 - (A) Bulletin
 - (B) Leaflet
 - (C) Pamphlet
 - (D) Blackboard
- 199. Traditional people oriented to past and never accept an innovation are known as:
 - (A) Innovation
 - (B) Adaptor
 - (C) Rejector
 - (D) Laggard
- 200. Operation flood was started in:
 - (A) 1970
 - (B) 1978
 - (C) 1986
 - (D) 1969

SPACE FOR ROUGH WORK

					•
	•				′ ·1
				•	.}
	•				
	•		. •		. :
	•				, (1)
		•		•	1
		•		***	
		•		•	1
	<u> </u>				
	,			-	. ;
•					
					1
				•	
		*		*	
			•		
	•			•	
					· .
	•		•		
		•			
				•	
		•		• .	{
					į
				• -	-
	·	•	•		
	•			•	
	•		`	*	
	•				
					The state of the s
				• .	
		•			
	•				,
			•		
•					
					· 1
					Maggio et al
					endorge endorg
•					NO.
·				•	
			2		•
	•		•		1
				• •	1
				•	· 1
				-	
		•			
				•	· •
•	•				anuv XVII
,	1 1		•		1
	T T				1
				•	
		•			
		•			1